
BUILD A TI-59 PROGRAMMABLE CALCULATOR

The TI-59 Programmable calculator from Texas Instruments along with the HP-65 from
Hewlett Packard was considered at one time to be the equivalent of a pocket PC in power
and functionality during the late 70's and early 80's. The feature that made this calculator so
popular was the Algebraic Operating System (AOS) that allowed the user to enter
mathematical expressions including parentheses. Other features were the programmability
that included being able to store up to 999 steps and 100 registers. Instructions included
subroutine calls, conditional and flag tests, and looping capabilities. For the article I will
submit a design for a DIY TI-59 Programmable Calculator that includes two keypads,
pushbuttons, an LED display and an LCD display. In addition I will provide the firmware
for the dsPIC30F6014 to emulate a subset of the TI-59 functions including the AOS system
and some programming capabilities. The reader, using my article entry as a starting point
could complete the remaining TI-59 functions and features. In addition it opens up the
possibility of emulating modern TI and HP graphing calculators.

User input and numeric key sequences are entered by means of the keypad or by initializing
the Program Memory with an AOS expression or program, or through the serial port when
it's configured for debugging. The TI-59 Programmable Calculator processes the selected
operations by feeding data to the embedded dsPIC30F6014 micro-controller for evaluation,
taking advantage of the double precision floating point math library for processing 64-Bit
floating point operations, including arithmetic, trigonometric, scientific, and statistical and
conversion functions. The answers are then converted from the internal IEEE floating point
formats to ASCII values and are sent to the desired output device which includes the LED
display connected via the SPI interface, an external serial LCD display, or the serial port
connected to a host PC or Laptop. The two keypads are scanned and the keystrokes are de-
bounced with a simple algorithm using the weak pull-up resistors. In addition, push-button
switches are used to provide the missing keys for the complete TI-59 keypad matrix.

The UART1 peripheral is used for serial I/O to debug the application by sending/receiving
serial output to a Windows Hyperterminal on a PC or laptop setup for 115200 baud, 8 data
bits and 1 stop bit. In addition the SPI1 peripheral is used to send data to the LED Display
module consisting of two MAX7219 LED Driver IC(s). The SCI peripheral in turn is used
to send data to the on-board LCD Display.

This is a tale of two calculators, one made by Hewlett Packard, and the other made by Texas
Instruments. The project that I selected for the Microchip dsPIC Article is a combination of
two innovative Programmable Calculators, the HP-65 and the TI-59 shown in Photo 1 that
paved the way to modern PDA’s such as the Pocket PC and the PALM. In a sense they are
also the progenitors to PCs and laptops and as such they can be used as simpler models to
learn from. I Selected the TI-59 as the model for this article because of its immense historical
significance in the advancement of personal calculators and computers. I also have a design
for the HP-65 Programmable Calculator using RPN notation which could be the subject of
another article. Comparisons between these two classic calculators have been the subject of
much debate over the years as to which system was better for evaluating expressions, so
comparisons between the TI-59 and the HP-65 will be apparent, although I loved both these
calculators equally so I will stay out of this debate.

Photo 1 - Shows the original TI-59 Calculator.

Photo 2a – Is a photo of a prototype HP-65 calculator with the colorful LED display
that I recycled for use with the TI-59 Programmable Calculator.

Photo 2b– You can see the wire-wrap construction very clearly using the clear plastic
enclosure for this calculator.

 Modern day hand held calculators were the brainchild of Jack St. Clair Kilby (1923-
), an American scientist from TI, who needed a vehicle to demonstrate his other invention,
the Integrated Circuit (IC) which he co-invented with Bob Noyce and Gordon Moore of
Fairchild Semiconductor. The invention of the Integrated Circuit is claimed as “the
invention that changed the world”. These two inventions were also credited with starting
the modern information age of the Personal Computer (PC). More information on
Jack is available from the TI WEB site: www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml.
There are many web sites dedicated to the TI-59, SR-52 and the HP-65 Programmable
Calculators, including many applications that run on them. It is amazing what people will
patent. Designs for the first TI hand held calculator and for the HP-calculators stored in the
vaults of the patent office at the site previously mentioned. They are readily accessible in
text and TIFF format on the WEB. The intricate hand drawn schematics are wonder to look
at, and must have taken draftsmen many long hours to draw since schematic capture
software tools (CAD and CAE) were not available then.

 Texas Instruments along with having invented the original handheld calculator,
(Patent # 3819921) in 1967, pioneered the Algebraic Operating System (AOS), (Patent #
4208720) that was first used by TI in their SR-52 Calculator late in the 1970’s. AOS is
simply a way of evaluating expressions using the order of precedence of operators, which
we all learned in grade school as prefix notation (also known as My Dear Aunt Sally
(MDAS). In their patent disclosure they describe in great detail how the AOS system
works. This calculator boasted the capability to handle complex expressions including up
to 9 levels of parentheses 224 program steps and 20 memory registers, and also included a

card reader /writer similar to the HP-65 calculator. Check out the following link for more
information:
http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml

 TI-59 soon calculator followed It also was programmable with up 960 steps or 100
memory registers steps and allowed complex expressions to be entered with parentheses
and first to use ROM Solid State modules (Patent #4153937) containing various
applications and also included a printer attachment. I had a TI-59 as a freshman in college
and it was very useful in my physics and math classes. I also programmed it for TIC-TAC-
TOE and space war for entertainment, instead of wasting quarters at the arcades. I
remember buying a TI-59 for college. I programmed it for Tic-Tac-Toe and Space War as
a cheap substitute to the coin operated arcade games that gobbled up so much of my lunch
money.

The other method for entering expressions is prefix notation also known as Polish Notation
in honor of Jan Lukasiewicz who developed the notation to specify arithmetic expressions
without the need to use parentheses in the early 1920’s. HP modified the format slightly
for use on their calculators by swapping the order of the operator (function) from the front
to the back and renamed the notation RPN.
http://www.hpmuseum.org/rpn.htm.

 If the reader is interested in HP calculators the virtual HP museum on the NET has
galleries of photos, articles etc., relating to HP calculator products. It is located at
http://www.hpmuseum.org/

There are many ways that a modern Programmable Calculator can be built including using a
micro-code emulator to run the actual HP or TI microcode instructions but I decided against
this due to the fact that the microcode is patented and copyrighted by HP and TI. Another
method is to use VLSI techniques to emulate the Programmable Calculator hardware but again
I did not choose this route because of the overall complexity and expensive tools required.
Instead I chose to use the Microchip DSPIC30F6014 as the Programmable Calculator’s
Central Processing Unit (CPU) by utilizing the dsPIC 1.1 Development Board (which I will
refer to as dsPIC from now on) as the Programmable Calculator mother board, and the
DSPIC30 C math and peripheral libraries for implementation of the emulated TI-59functions,
including using the IEEE Standard 754 Floating-Point double precision floating point for all
the emulated TI-59arithmetic functions. With the dsPIC I get the LCD Display (which the
original HP-65 and SR-52 did not have) but newer models such as the HP-49G and TI-89
Graphing calculators do. I mention this fact only because for the current application to emulate
an HP-49G requires minor modifications to the hardware and firmware as I will point out later
on.

Because of personal time constraints I was not able to emulate and test all the TI-59functions
and additional features. Instead, I chose to implement and test only a subset of the TI-
59arithmetic and programming functions since the remaining functions follow the
same patterns and leaves the reader the option of completing them if so desired. The TI-59
AOS calculator functions that I completed work well as shown in the examples provided with
this article. I was also able to get most of the TI-59 programming capabilities emulated and

working as shown in the TI-59 test program that I provide to calculate the Statistical Mean and
Standard Deviation functions. I also took some liberties with the encoding of the keystrokes
with regards to the “Gold” functions that dedicated TI-59 users may have issues with. The
knowledgeable reader could easily resolve these issues by investing some time and making a
few changes to the firmware. A block diagram for my version of a Programmable Calculator
is shown Figure 1.

Figure 1 – Is a block diagram of the TI-59 Programmable Calculator.

A harder task for the reader is to actually emulate the SR-52 or TI-59 Programmable
Calculator with its pioneering Algebraic Operating System (AOS) used to evaluate
parenthesized arithmetic expressions. The big hurdle here is to develop a parser to convert
expressions from AOS to RPN and just use the RPN interpreter, which I already provide to
evaluate them. The keypad layouts are suitably changed to match the SR-52 or TI-59
keypads, and the function key coding is changed accordingly. Writing a parser for AOS is
beyond the scope of this article but many sources and examples exist using the popular Unix
YACC and LEX tools that are used for compiler development. The TI AOS notation is used to
handle complicated parenthesized expressions by using the grade school MDAS order of
operations algorithm:

1) Parentheses and functions
2) Multiplication
3) Division
4) Addition
5) Subtraction

Hewlett Packard calculators avoid this difficulty by using the Reverse Polish Notation (RPN)
to handle complicated parenthesized expressions. Using RPN for evaluating expressions
requires a new paradigm from the original My Dear Aunt Sally Rule. To use it simply start at
the innermost parentheses and evaluate, pushing the intermediate results to the RPN stack and
proceed to work out to the outermost parentheses, all the while using the HP-65 RPN stack
manipulation keys: Enter, Roll Down, Roll Up, Exchange X and Y. Another advantage to
choosing RPN for the calculator notation is the minimal hardware needed for the
implementation, and must have been very important to HP engineers during the development
cycle of the HP-65.

Although emulating an antique Programmable Calculator as a project does not fit the “cutting
edge” my hope is that the reader new to the dsPIC architecture will learn from this article
project how to work with the following hardware including: a numeric LED displays, an LCD
display, two hex keypads, switches, pushbuttons, and the DSPIC30F6014 microcontroller. In
addition to developing software for Interrupt Service Routines (ISRs), and peripherals such as
the SPI, UART and low level LED Display drivers, LCD Display drivers and keypad drivers,
the software covered in this article will also provide an introduction to various calculator
languages, such as My Dear Aunt Sally (MDAS), Reverse Polish Notation (RPN), Algebraic
Operating System (AOS) and FORTH as well as some of the tools needed to create lexical
analyzers and parsers for them. By learning how the Programmable Calculator works, the
reader will be able to better understand modern digital computers and how the input devices,
output devices, computer languages and operating systems work, since an advanced calculator
is very similar to a small laptop or palmtop computer.

Because of my lack of SMT skills, and time constraints I chose to develop a “large scale
prototype” of the TI-59 to house my project instead of a compact calculator size model, but
there is no reason why this design shown in Figure 2, could not be constructed on a small 2
inch square PCB using SMT technology by those skilled in this new technology and having it

manufactured by a PCB FAB house since the dsPIC30F6014 microcontroller is no larger than
a US Postage Stamp, so that it could be integrated into a real pocket calculator. Think of the
look your boss or co-workers will give you when you tell them you made this device from
scratch. TI-59 owners and collectors may want to bring new life to their broken calculators by
performing some microsurgery on them and installing a TI-59 emulator mother board,
although the card reader would still be a problem. The reader building the board from scratch
could just use the dsPIC schematic shown in Figure 3 as a starting point for the compact
motherboard.
Instead, I used the dsPIC 1.1 Development Board as the basic design for the Programmable
Calculator mother board using the on-board LCD display for debug and I/O and connecting
the LED display, two keypads, and buttons to the board wire-wrap construction and pin
headers that I soldered directly to the board prototype area as shown in Photo 3a-b.

Photo 3a - Shows the prototype TI-59 Programmable Calculator including the custom
keypad. Not shown are the thirteen pushbutton switches.

Photo 3b - Shows the prototype TI-59 Programmable Calculator including the custom
keypad with TI-59 function key labels glued to each keypad key. Not shown are the
thirteen pushbutton switches.

Readers are encouraged to modify this design as desired: For example, larger keypads or the
addition of a sixteen segment alphanumeric LED display may be used, and financial, vector,
matrix, trigonometric and scientific functions (FFT and Digital Filters) may be added if so
desired. Applications for this project abound, for instance a portable data analyzer using the
DSPIC ADC to collect the data and utilizing the FFT for generating the spectrum and the
Digital Filters to signal condition the data collected. While other microcontrollers such as the
68HC12 from Motorola and the Microchip dsPIC30F6014from MICROCHIP could have
been used for this application I chose to enter the dsPIC article and use the dsPIC30F6014
because I felt it was ideal for handling the necessary double precision floating math processing
for the emulation of the TI-59 math functions.

Figure 2 – Complete schematic for the TI-59 Programmable Calculator

PROGRAMMABLE CALCULATOR EMULATOR HARDWARE

The complete TI-59 Programmable Calculator (designated as Calculator from now on) was
shown in the block diagram. The boxes in dark forest green represent functions that I have not
yet completed because of time constraints, but are part of the design. The calculator hardware
configuration shown the block diagram was the easiest for me to build in time for the article,
although with additional hardware, this design could be the basis for building the complete
TI-59-based AOS or an advanced HP-41C based RPN calculator. I include thirteen extra push
button switches used to fill out the missing row and column of function keys available on an
TI-59. These pushbutton switches are connected to available microcontroller port I/O lines
using 10K pull-up resistors. One terminal of each switch is pulled-up with a 10K resistor and
connected to the available digital I/O port, while the other is tied to ground. In addition I used
two 4 X 4 keypads to complete the TI-59 keypad matrix. Figure 3 shows the LED Display
driver schematic to be used for driving Common Cathode LED digits.

HOW IT WORKS

The Calculator's internal workings are similar to those of commercial programmable
calculators and computers. User input and numeric key sequences are entered by means of the
keypad or through the serial port when it's used as a numeric co-processor unit. The
Calculator processes the selected operations by feeding data to the embedded microcontroller
for evaluation. It then performs the calculations using standard floating-point arithmetic as
shown in Listing 1. Answers are converted from the internal IEEE floating point formats to
ASCII values and are sent to the desired output device, which includes the LED display, the
LCD display, or the serial port connected to a host PC or Laptop. The co-processor mode uses
the serial interface exclusively for its I/O. A unique feature of this calculator is that answers
may be displayed in any combination of the three display methods mentioned above, as shown
in Photos.

Listing 1 – Shows the simple recursive descent algorithm used to evaluate
mathematical expressions using double precision floating point.

//***
//* Expression - Evaluate a floating point expression using recursive descent.
//***
double Expression(double ExprValue)
{
Token_Key_T Addop;
double NextTermVal;
// Process the next term in the expression
ExprValue = Term(ExprValue);
while(in(Token, AddingOps))
{
Addop = Token;
// Get next character
ReadChar();
// Process the next factor in the expression
NextTermVal = Term(NextTermVal);
switch(Addop)
{
case PLUS:
{
ExprValue = ExprValue + NextTermVal;
break;
}
case MINUS:

{
ExprValue = ExprValue - NextTermVal;
break;
}
}
}
//return ExprValue;
}
//***
//* Term - Evaluate a floating point term using recursive descent.
//***
double Term(double TermValue)
{
Token_Key_T Mulop;
double NextFacVal;
// Process the next factor in the expression
TermValue = Factor(TermValue);
while(in(Token, MultOps))
{
Mulop = Token;
// Get next character
ReadChar();
// Process the next factor in the expression
NextFacVal = Factor(NextFacVal);
switch(Mulop)
{
case TIMES:
{
TermValue = TermValue * NextFacVal;
break;
}
case DIVIDE:
{
if (NextFacVal != 0.0)
{
TermValue = TermValue / NextFacVal;
}
else
{
// Report division error ...
ReportError();
}
break;
}
}
}
return TermValue;
}
//***
//* Factor - Evaluate a floating point factor using recursive descent.
//***
double Factor(double FactorValue)
{
Literal_Key_T The_Literal; // Holds the ascii literal for selected
numeric key
int The_Digit = 0; // The numeric value of the digit
// Convert the token representing a digit to a numeric value
strcpy(The_Literal, (char *) Get_Literal(Token));
#ifdef DEBUG
printf("Token = !%s! \r\n", The_Literal);
#endif
sscanf(The_Literal, "%d", &The_Digit);
if ((in(Token, Digits)) || (in(Token, Functions)) || (Token == PREVIOUS) ||
(Token == LEFT_PARENTHESES))
{
// Process Digits 0..9
if (in(Token, Digits))
{
FactorValue = ReadNumber(FactorValue);
}
else
// Process "P"
if (Token == PREVIOUS)
{
// Get next character

ReadChar();
FactorValue = The_Previous_Result;
}
else
// Process "("
if (Token == LEFT_PARENTHESES)
{
// Get next character
ReadChar();
FactorValue = Expression(FactorValue);
if (Token == RIGHT_PARENTHESES)
{
// Get next character
ReadChar();
}
else
{
// Report error ...
ReportError();
}
}
}
else
{
// Report error ...
ReportError();
FactorValue = 0.0;
}
return FactorValue;
}

BUILDING THE PROGRAMMABLE CALCULATOR

In addition to using the dsPIC 1.1 Development Board as the main platform (mother board)
for the Calculator, I also included designs for the remaining hardware that may be assembled
from electronic components found at Radio Shack, Digikey or Jameco. In this way we can
recapture something of Pascal and Babbage's spirit of invention by building a calculator piece
by piece in the same way that those men did. Its inner workings may differ somewhat from
commercial calculators, but it is functionally comparable and may be customized by the reader
to include more features. During the course of this article, I learned how all the calculator
subsystems, such as the keypad, the display, and the DSPIC30F6014 microcontroller work
together to make this device. I ended up using wire-wrap, point to point and soldering
techniques to build the calculator electronics but the reader may use any method of
construction desired.

BUILDING THE PROGRAMMABLE CALCULATOR CONTROLLER
BOARD

The schematic shown in Figure 2 can be used to build a Calculator controller board from
scratch. Just use the power and decoupling along with the schematics for the UART and other
features that you might want, that are provided with the dsPIC to complete the design.
Point-to-point and PC board construction may also be used for this project. For the article I
just interfaced the external hardware directly to the

The keypad is connected to the Calculator Controller board with either an 8 or 14 pin ribbon.
Mark pin 1 on the ribbon if there is no marking for it already, and connect it to the keypad.
The 330-Ohm resistor network is used to prevent ESD damage to the sensitive Calculator
Controller electronics. Use a Digital Multi-meter to check all the connections between the
keypad and the controller.

At this point, it's time to check the circuit for shorts or open lines by using the Digital
Multi-meter to check continuity on all power, ground, and logic signals. The board may be
inspected with a magnifying glass.

THE PROGRAMMABLE CALCULATOR BRAIN

The use of a microcontroller for this application is unavoidable unless EPLD, FPGA or VLSI
techniques are used. I chose the DSPIC30F6014 microcontroller, because I felt that, at around
$17.00 on E-Bay, it was more economical than a BASICX or ATOM microcontroller costing
approximately $50.00 that also supports double precision IEEE floating point.

The DSPIC has 144 Kbytes Flash, 4 Kbytes of EEPROM and 8Kbytes bytes of on-chip RAM
capacity, most of which I used for the calculator firmware development. I selected a PLL
active 16X for 29.4912 MIPS, using the internal 7.3728 MHz crystal for the oscillator settings
for speedier calculations. The new Flash-based DSPIC30F6014, now available from
Microchip uses the using ICSP interface for programming the on-chip FLASH and also takes
advantage of low cost In Circuit debugging capability via ICD2 debugger.

I used the on-chip UART1 (RS-232) interface to communicate with a PC or laptop host via
Hyperterminal Calculator for debugging and testing and can also be a substitute display for the
LED or LCD display.

To emulate the TI-59card reader I planned on using the on-chip Microchip EEPROM, used as
the primary programmable calculator storage device, can store up to 4 KB to be used for
storing multiple 100 step programs. It may also be used for storing intermediate calculation
results. Another possible function would be for its use by the firmware as a stack for
evaluation of expressions or as a Forth or Basic interpreter. The capacity can easily be
increased to 512 KB by dropping in a 24LC512 KB X 8 serial EEPROM device.

MAKING THE NUMERIC LED CALCULATOR DISPLAY

In order to make an optional LED display easier to read under various lighting conditions, I
decided to use the large digit LEDs to build the 12-digit numeric display as shown in Photo 4.
The LED display module is assembled from individual LED digits, stacked together using
Crazy Glue. To keep the digits aligned, I used a heavy bookend with a straight edge, and
carefully glued one digit at a time. I let each set for a few minutes to dry before attaching the
next digit. Note: Crazy Glue can glue fingers together, so it's important to avoid contact. If it
gets on the skin, it should be wiped it off immediately.

Once the LED digits were glued, it was time to wire-wrap them as shown in Figure 3. The
LED display BUS is made by connecting each of the leads in a daisy-chain fashion. This had
to be done very carefully since the LED digit leads are delicate and can only support one level

1 wrap. It was while wrapping the display that I broke one of the leads and had to solder it.
To avoid this problem, use the lead to wrap a special 2 level wrap with a manual wire-wrap
tool. Only use ½ " inch from each end of the wire-wrap wire, rather than the usual 1 inch to
accommodate the second wrap, and proceed to carefully wrap it on each LED pin with the
hand-wrap tool.

Photo 4 – Is a snapshot of the large 12-digit numeric LED Display Driver Board.

THE NUMERIC LED DISPLAY MAX7219 DRIVER BOARDS

The complete LED display board schematic is shown in Figure 3 and Photo 5. The MAX7219
LED digit display driver IC is very flexible. It is only needed if the optional LED Display is
going to be used instead of the LCD or UART for displaying the numeric output. Although,
it's one of the more expensive components at $9.00, it's well worth the expense. It drives the
LED digits' segments using a multiplexing scheme that keeps them from drawing too much
power and also keeps them at the correct level of brightness. A single MAX7219 can drive up
to 8 LED digits or 64 individual LED(s), although it can be cascaded to drive groups of 8
digits. It can also control their brightness using a PWM and a current limiting resistor (10K).
The MAX7219 converts the binary values to BCD to drive the correct LED segments.

The DSPIC30F6014 sends data to the MAX7219 display driver using a 3-wire SPI interface
using the SPI1, since SPI2 is reserved for the LCD Display. The configuration data,
consisting of level of brightness, number of digits, and data format (BCD or Binary), are sent
to the MAX7219. There is also a test mode that lights up all the segments of each LED digit
connected.

Before populating the board with the IC(s), power the board by connecting a 6 Volt battery to
the (+) and (-) power terminals, and check to see if the Power LED lights up. If it does, check
for +5V at the VDD pin of each IC and V at the VSS pins. Once this has been done, the
Board may be populated with the IC(s) and fired up for the first time.

An interesting feature found on most cars these days is the ability to automatically adjust the
dashboard instrument lighting. A similar feature could be built into the Calculator by using a
photo-transistor or CDS cell to measure the ambient light and use it to adjust the LED digit
brightness. The brightness may also be set via the MAX7219, using the "brite xx" command,
where xx ranges from 0..15.

The MAX7219 can also be configured to drive popular matrix LED(s), although that would
involve changes to the firmware to store the character set bitmaps. These bitmaps could be
stored in EPROM, and the bits corresponding to a given character could be sent to the
MAX7219. The advantage of using matrix LED(s) is that alphanumeric values could be
displayed in a similar manner to the LCD displays. The firmware for the MAX7219 is
available with the contest materials in the file max7219.c

Photo 5 – Shows the colorful LED display that I recycled for use with the TI-59
Programmable Calculator.

Figure 3 - The complete LED display board schematic is shown in this schematic using
the MAX7219 LED digit display driver IC.

Photo 5 – Shows the MAX7219 LED Display Driver Board.

USING THE BUILT-IN LCD DISPLAY

The multi-line LCD PG1223D-1 8-Bit display that is available on the dsPIC is put to good use
for debugging and for easy to read I/O from the calculator. The HP-41C was one of the first
calculators to use this type of display and If you happen to prefer LCD displays or if you don’t
want to take the time to make the LED display then all I/O can be redirected to the LCD
display only by removing the LED DRIVER support flag from the flags.h file. The LCD
Driver is a separate PIC18F242 Programmed to control the LCD via the SPI2 interface.

Advantages to the LCD display include low power consumption necessary for independent
battery operation of a calculator, alphanumeric capability 4 lines X 20 characters or graphics
consisting of 120 X 32 pixels using a standard SED1520 LCD controller, that could be put to
use for emulating one of the latest HP or TI graphic calculators, and finally its simple SPI
interface. Most of the LCD capabilities are available for other applications using the
functions in the lcd.c.

SERIAL INTERFACE

The Calculator’s serial user interface (UI) uses the dsPIC's UART1 to communicate with a
Host PC or Laptop using Windows Hyperterminal. The UI interface was initially developed
for debugging and testing calculator functions, including the floating point I/O routines. The
UI consists of a simple prompt “>“ that accepts text input from the operator and displays the
answers to the terminal in text form, and is always available by default to the Calculator. The
user enters calculator keystrokes and operands to evaluate floating-point expressions and the
results are displayed on the PC or Laptop’s screen. Otherwise the TI-59 Calculator keypad and
LCD/LED display provide all the I/O required allowing the user to enter expressions and
display the results.

USING THE BUILT-IN LCD DISPLAY

The multi-line LCD PG1223D-1 8-Bit display that is available on the dsPIC is put to good use
for debugging and for easy to read I/O from the calculator. The HP-41C was one of the first
calculators to use this type of display and If you happen to prefer LCD displays or if you don’t
want to take the time to make the LED display then all I/O can be redirected to the LCD
display only by removing the LED DRIVER support flag from the flags.h file. The LCD
Driver is a separate PIC18F242 Programmed to control the LCD via the SPI2 interface.

Advantages to the LCD display include low power consumption necessary for independent
battery operation of a calculator, alphanumeric capability 4 lines X 20 characters or graphics
consisting of 120 X 32 pixels using a standard SED1520 LCD controller, that could be put to
use for emulating one of the latest HP or TI graphic calculators, and finally its simple SPI
interface. Most of the LCD capabilities are available for other applications using the
functions in the lcd.c.

PROGRAMMABLE CALCULATOR KEYPAD

The custom TI-59 keypad is made from two standard 4 X 4 keypads along with four push
button switches, two slide switches to for a keypad with enough keys for an TI-59 calculator.
The keys are mapped to functions as shown in Table 1, using a keypad encoding scheme that I
made up to map the row: column key codes along with the state of the special “gold”
function keys found on TI-59 Programmable calculators. For convenience, these codes map
linearly to individual tokens representing all possible key strokes.

The on-board pushbutton switches are interfaced via the Change on Notice (CN) interrupts
using CN interrupt service routines (ISRs) to obtain their current states . I could have used the
CN interrupts for scanning the keypads PORT B status interrupt, but I chose not to in order to
keep the firmware simpler by minimizing the number of ISRs.

Table 1 - Keypad Layouts for the TI-59

TI-59 Default key labels layout table:

 "A ","B ","C ","D ","E ",
 "2nd ","INV ","lnx ","CE ","CLR ",
 "LRN ","x<>t ","x^2 ","SQRT ","1/x ",
 "SST ","STO ","RCL ","SUM ","y^x ",
 "BST ","EE ","(",") ","/ ",
 "GTO ","7 ","8 ","9 ","X ",
 "SBR ","4 ","5 ","6 ","- ",
 "RST ","1 ","2 ","3 ","+ ",
 "R/S ","0 ",". ","+/- ","= "

TI-59 "2nd" Gold key labels layout table:

"A* ","B* ","C* ","D* ","E* ",

 " "," ","log ","CP "," ",
 "Pgm ","P->R ","sin ","cos ","tan ",
 "Ins ","CMs ","Exc ","Prd ","Ind ",
 "Del ","Eng ","Fix ","Int ","|x| ",
 "Pause ","x=t ","Nop ","Op ","Deg ",
 "Lbl ","x>=t ","Sigma+ ","x_bar ","Rad ",
 "St flg ","If flg ","D.MS ","Pi ","Grad ",
 "Write ","Dsz ","Adv ","Prt ","List "

DEBOUNCING THE CALCULATOR KEYS

Depending on the mechanical and electrical characteristics of the selected keypad, "extra"
keystrokes may be encountered each time a key is pressed. This anomaly can be taken
eliminated by de-bouncing the keypad keys -- usually by placing a 20-millisecond delay in a
loop where the key is being polled.

I wrote my version of de-bounce in DSPIC C30 C from information provided in Myke
Predko's book [7] . Myke's de-bounce routine in DSPIC assembly was re-hosted to C so that I
could include it for my Calculator. The algorithm worked flawlessly, filtering multiple
keystrokes. In addition it debounces the three extra pushbutton switches required for the
missing calculator keys. The source code provided debounces two 4 X 4 keypads. Perhaps
others may benefit from using the C version please refer to the C source files keypad.c and
keypad.h, which I provide with the article materials for more information.

LED DISPLAY +5 VOLT POWER SUPPLY

A good power supply is a must for the LED display. Even though the LED digits are
multiplexed, they can still draw quite a lot of power when all the segments are turned ON, for
example, when displaying the number 8. Earlier, I mentioned the problem of only being able
to display a total of 10 large LED digits, which I believe could be due to excessive current
drawn by each LED. The power supply must be able to handle this load along with the power
required for the DSPIC30F6014 and all the other IC(s) used in the calculator electronics. A
+5 Volt supply sufficient for all these power consumption requirements is shown in Figure 4.
The project may be powered by a 9 Volt Alkaline or NICAD rechargeable battery, or even a 9
to 12 Volt wall transformer, as shown in the figure. Depending upon the number and type of
devices connected to the Calculator Controller board, a heat sink may be needed by the 7805
IC if it gets too hot during normal use or shuts down, although I didn't require one for my

hardware configuration. The 3.3 Volt supply is optional and is used for “low” power
consumption ICs.

The power supply can be separate from the board or it may be built in by using any unused
real estate on the prototype board. The calculator is turned On/Off by a convenient slide
switch located next to the power supply.

For power conservation when running from 9 volt battery, I plant to use the dsPIC sleep mode
or wakeup on keystroke mode capability to address low power consumption concerns, so the
type of display used (LED, LCD or PC) will determine the length of time the calculator will
run using a 9 Volt battery. Still, for continuous use, a 12 Volt DC wall transformer is highly
recommended.

Figure 4 – A 3.3/5 Volt supply sufficient for all the TI-59 Calculator power consumption
requirements

MISSING PROGRAMMABLE CALCULATOR FUNCTIONS

As I mentioned before I implemented a subset of the TI-59 mathematical and programming
functions that could be completed in time for the article. The remaining functions are easily
added by adding the calls to the appropriate firmware modules

Some of the missing statistical and math function algorithms may be found in standard college
Calculus books and books on numerical methods. This application could make use of some
the Taylor series from high school or college.

The financial, trigonometric, and scientific functions are left as a future exercise for those
interested in numerical methods.

CALCULATOR FIRMWARE

Firmware for the Calculator application, ti59.c, was developed from requirements shown in
Figure 5, based on using the previously-mentioned historical information and my personal
experience using programmable calculators. I didn't attempt a complete emulation, since that
would require extra hardware and development. Instead, I opted to emulate most of the basic
features, while leaving out the most complex. As such, the calculator is useful as a demo or
learning tool, but not for work where more precision and accuracy are required.

The complete application is ready to be programmed into a dsPIC30F6014 using the files
provided with the article materials. For those interested in customizing the software, I divided
the firmware for various hardware functions into separate C files to facilitate development,
debugging, and maintenance. These modules are shown in Figure 6, which is a high-level
block diagram of the Calculator firmware. In my opinion, this is the best way to organize a
large application such as this, since in this way, it may be successfully tested and integrated
into the hardware one module at a time. There are better methods for organizing the firmware,
using the Object Oriented Programming methodology with a language such as C++ or Java.
Although I would like to see a C++ or Java compiler for the DSPIC, it would require a very
high-end dsPIC with lots of on-chip RAM and Flash.

Values entered into the TI-59 registers are sent to the LCD, LED, or serial port, depending on
which driver flags have been defined in the file flags.h. If the keypad driver flag hasn't been
defined, input is redirected from the keypad to the serial port. Otherwise, input comes directly
from the keypad, which means the application may hang if the keypad isn't connected to the
Calculator hardware.

Figure 5 - Shows the TI-59 Programmable Calculator firmware structure

PROGRAMMABLE CALCULATOR MODES

There are three modes of operation available to the user. The Calculate Mode is the dafault
mode of operation. In addition there is a Program Mode and a Run Mode. The program mode
also provides rudimentary editing capabilities when entering an AOS program. Not all
functions from these modes are available since I was not able to complete them in time for the
article.

The AOS Calculator mode is the default mode when the unit is powered up. See Diagram_5,
for a list of currently available Calculator functions. In this mode, the firmware works by
simply reading keystrokes from the serial port for user input, converting from ASCII to IEEE
floating point operands, and using them to build simple arithmetic expressions with the
floating point numbers and the basic operators "+","-","X" and "/","E” as delimiters. The “E”
character is used for exponential notation when entering floating point numbers when using
UART1 for I/O.

Even though I haven't completed this feature of the Calculator, it's possible to use the DSPIC's
internal EEPROM to write AOS programs to EEPROM and read them back in such a fashion
to emulate the TI-59 Card Reader for non-volatile storage capabilities using the 4 Kbytes of
EEPROM. This capability can be extended by using external serial I2C EEPROM with up to
512 Kbytes if a Microchip 24LC512 is interfaced to the calculator.

ADVANCED PROGRAMMABLE CALCULATOR SOFTWARE

I used algorithms provided in Jack Crenshaw's column in the Embedded Systems
Programming journal and in his new book titled "MATH Toolkit for REAL-TIME
Programming" [2] for this article for the development of some missing arithmetic functions.

I did not have time to complete the financial functions and statistical functions that were
available on the original HP-65. While developing these missing functions I referred to the
"Numerical Recipes in C" [3], which is another excellent book for the hobbyist's bookshelf.
The book is a classic that has been available for years. It includes reliable algorithms for
advanced mathematics plus algorithms in both Fortran and C for: least square fit, rms, mean,
standard deviation, FFT, interpolation, integration, etc.

Advanced expression evaluation that either completely eliminates parentheses or allows the
use of parentheses in a mathematical expression may be explored with calculator languages
such as RPN, AOS, Forth, and Basic. Special unit conversion functions, such as those used in
Physics, Astronomy, Electronics, and Mechanics are also readily added. In addition, modern
calculators now have advanced graphing capabilities with an LCD display. These capabilities
could be added to the Calculator with additional software.

GOING FURTHER

Some simple, easy-to-do improvements to the Calculator could include adding larger numeric
LED digits for the display or the ability to drive large Matrix LED displays. The LED display
could also be improved by incorporating the new MAX6954 Display Driver that drives the
14/16 segment displays. It would allow the TI-59 to display short alphanumeric messages
similar to the HP-67 and HP-41C programmable calculators. The MAX6954 uses an SPI
interface similar to the interface used by the MAX7219 LED Driver IC, so changes to the
firmware would be minimal for this improvement.

Information provided in this article, can be the starting point for a complete TI-59 AOS-based
Programmable Calculator emulator. A simple recursive descent calculator algorithm written
in Pascal, as described in Niklaus Wirth’s classic book “Algorithms + Data Structures =
Programs” [1], may be found at your local technical library or on Amazon is a good starting
point.

CONCLUSION

For this article article I described in great detail all the firmware required to make the
Programmable AOS Calculator perform useful mathematical functions including
trigonometric, scientific and conversion functions. In addition I discussed calculator languages
used on popular commercial calculators from HP, TI and Casio.

This calculator although educational, is not really useful for everyday use since it is still
missing some functions, and has not been thoroughly tested for accuracy and correctness.

Instead think of it as a training tool for learning embedded microcontroller and DSP
development using Microchip tools and the dsPIC.

REFERENCES

books:
[1] Wirth, Niklaus, “Algorithms + Data Structures = Programs”, Prentice-Hall Series In
Automatic Computation.

[2] Crenshaw, Jack W., "MATH Toolkit for REAL-TIME Programming", CMP Books, CMP
Media Inc., 2000

[3] Press, William, Flannery, Brian, Teukolsky, Saul, Vettering, William, “Numerical Recipes

in
C”, Cambridge University Press, 1993

[4] Holub, Allen I., “Compiler Design in C”, Prentice Hall Software Series, 1990

[7] Predko, Michael, "Programming & Customizing DSPICmicro Microcontrollers",

McGraw-Hill/TAB Electronics; ISBN: 0071361723; 2nd edition (December 4, 2000)

datasheets:
[11] Maxim, "Serially Interfaced, 8-Digit LED Display Drivers/MAX7219", 1997.

sources:
Microchip Technology Inc 1-800-344-4539, www.microchip.com

BIOGRAPHY

Daniel Ramirez is currently a Senior Software Engineer with over 10 years of experience
working on Real-Time Embedded Systems. Hobbies are Travel, Golf, Treasure Hunting, and
Robotics.

